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Abstract

We consider the problem of forecasting the next (observable) state of an unknown ergodic
dynamical system from a noisy observation of the present state. Our main result shows that
support vector machines (SVMs) using Gaussian RBF kernels can learn the best forecaster from
a sequence of noisy observations if a) the unknown observational noise processes is bounded
and has a summable α-mixing rate and b) the unknown ergodic dynamical system is defined by
a Lipschitz continuous function on some compact subset of Rd and has a summable decay of
correlations for Lipschitz continuous functions. In order to prove this result we first establish
a general learning theorem for SVMs and all stochastic processes that satisfy a mixing notion
that is substantially weaker than α-mixing.

1 Introduction

Let us assume that we have an ergodic dynamical system described by the sequence (Fn)n≥0 of iter-
ates of an (essentially) unknown map F : M →M , whereM ⊂ Rd is compact and the corresponding
ergodic measure µ is assumed to be unique. Furthermore, assume that all observations x̃ of this
dynamical system are corrupted by some stationary, Rd-valued, additive noise process E = (εn)n≥0

whose distribution ν we assume to be independent of the state, but otherwise unknown, too. In
other words all possible observations of the system at time n ≥ 0 are of the form

x̃n = Fn(x0) + εn , (1)

where x0 is a true but unknown state at time 0. Now, given an observation of the system at some
arbitrary time our goal is to forecast the next observable state1, i.e., given x+ε we want to forecast
F (x) + ε′, where ε and ε′ are the observational errors for x and its successor F (x). Of course, if
we know neither F nor ν then this task is impossible, and hence we assume that we have a finite
sequence T = (x̃0, . . . x̃n−1) of noisy observations from a trajectory of the dynamical system, i.e.,
all x̃i, i = 0, . . . , n−1, are given by (1) for a conjoint initial state x0. Now, informally speaking our
goal is to use T to build a forecaster f : Rd → Rd whose average forecasting performance on noisy

1We will see later that under some circumstances this is equivalent to forecasting the next true state. For the
moment, however, we deal with observable states since under our above assumptions these are the only ones we have
access to.
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observations is as small as possible. In order to render this more precisely we need a loss function
L : Rd → [0,∞) such that

L
(
F (x) + ε′ − f(x+ ε)

)
gives a value for the discrepancy between the forecast f(x+ε) and the observed next state F (x)+ε′.
In the following, we always assume implicitly, that small values of L

(
F (x)+ε′−f(x+ε)

)
correspond

to small values of ‖F (x) + ε′− f(x+ ε)‖2, where ‖ · ‖2 denotes the Euclidean distance in Rd. Now,
by the stationarity of E the average forecasting performance is given by the L-risk

RL,P (f) :=
∫ ∫

L
(
F (x) + ε1 − f(x+ ε0)

)
ν(dε)µ(dx) , (2)

where ε = (εi)i≥0 and P := ν ⊗ µ. Obviously, the smaller the risk the better the forecaster is, and
hence we ideally would like to have a forecaster f∗L : Rd → Rd that attains the minimal L-risk

R∗
L,P := inf

{
RL,P (f)

∣∣ f : Rd → Rd measurable
}
. (3)

Now assume that we have a method L that assigns to every training set T ∈ (Rd)n a forecaster fT .
Then the method L achieves our goal asymptotically, if it is consistent in the sense of

lim
n→∞

RL,P (fT ) = R∗
L,P , (4)

where the limit is in probability P . To our best knowledge this forecasting problem has not
been considered in the literature. Moreover, even the observational noise model itself has only
been considered sporadically, though it clearly “captures important features of many experimental
situations”, [26]. One of the reasons for this lack of consideration may simply be the fact that
unlike dynamical noise which typically leads to a Markov chain, the observational noise does not
change the deterministic character and the long range dependence of the system, and hence the
observational noise model cannot be treated by more traditional time series techniques. Moreover,
most of the existing work on the observational noise model deals with the question of denoising
[23, 17, 34, 22, 24, 25, 26]. In particular, [24, 25, 26] provide both positive and negative results
on the existence of consistent denoising procedures. Finally, for the least squares loss [31] presents
methods for finding f∗L for systems of the form Zi+1 := F (Zi)+εi+1, i ≥ 0, where (F i) is a dynamical
system and (εi) is some additive centered i.i.d. dynamical noise. In particular, consistency of two
histogramm-based methods is established if a) F : M → M is continuous and (εi) is bounded, or
b) F is bounded and εi is absolutely continuous, respectively. Note that the first case shows that
in the absence of dynamical and observational noise there is a method which can identify the map
F whenever it is continuous but otherwise unknown. However, it is unclear how to extend the
methods of [31] to deal with observational noise.

Variants of the forecasting problem for general stationary ergodic processes (Zi) have been ex-
tensively studied in the literature. One often considered variant is static autoregression (see [21,
p. 569ff] and the references therein) where the goal is to find sequences f̂m(Z−1, . . . , Z−m) of esti-
mators that converge almost surely to the conditional expectation E(Z0|Z−1, . . . , Z−∞), which is
the least squares optimal one-step-ahead forecaster using an infinite past of observations. However,
even if we consider forecasters using a longer history of observations the goal of static autoregres-
sion cannot be compared to our concept of consistency because different notions of convergence
are considered. Indeed, in static autoregression the goal is to find a near optimal prediction for
x̃0 using the previously observed x̃−1, . . . , x̃−m of the same trajectory, whereas our goal is to use
the observations to build a predictor which predicts near optimal for all future observations. In
machine learning terminology static autoregression is thus an “on-line” learning problem whereas
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our notion of consistency defines a “batch” learning problem. Learning methods for forecasting
goals closer related to our notion of consistency were considered by, e.g., [29, 28] but unfortunately
these methods require α- or β-mixing conditions that cannot be satisfied by non-trivial dynamical
systems. Finally, a result by Nobel [30] shows that there is no method that is universally consis-
tent for, e.g., classification and regression problems where the data is generated by an arbitrary
stationary ergodic process.

If the observational noise process E is mixing in the ergodic sense then it is not hard to check
that the process described by (1) is ergodic and hence it satisfies a strong law of large numbers by
Birkhoff’s theorem. Using the recent results in [38] we then see that there exists a support vector
machine (see the next section for a description) depending on F and E which is consistent in the
sense of (4). However, [38] does not provide an explicit method for finding a consistent SVM even
if both F and E are known. Consequently, it is fair to say that though SVMs do not have principal
limitations for the forecasting problem there is currently no theoretically sound way to use them.
The goal of this work is to address this issue by showing that certain SVMs are consistent for
all Lipschitz continuous F and bounded E that have a sufficiently fast decay of correlations for
Lipschitz continuous functions. In particular, we show that these SVMs are consistent for, e.g., all
uniformly smooth expanding or hyperbolic dynamics F and all bounded i.i.d. noise processes E .

The rest of this work is organized as follows: In Section 2 we recall the definition of support
vector machines (SVMs). Then, in Section 3 we present a consistency result for SVMs and general
stochastic processes which have a sufficiently fast decay of correlations. This result is then applied
to the above forecasting problem in Section 4, where we also briefly review some dynamical systems
with sufficiently fast decay of correlations. Possible future extensions of this work are discussed
in Section 5. Finally, the proofs of the two main results can be found in Section 6 and Section 7,
respectively.

2 Support Vector Machines

The goal of this section is to briefly describe support vector machines which were first introduced by
[7, 15] as a method for learning binary classification tasks. Since then they were generalized to other
problem domains such as regression and anomaly detection, and nowadays they are considered to be
one of the state-of-the-art machine learning methods for these problem domains. For an thorough
introduction to SVMs we refer the reader to the books [41, 16, 35].

Let us begin by introducing some notions related to SVMs. To this end let us fix two non-empty
closed sets X ⊂ Rd and Y ⊂ R, and a measurable function L : X × Y × R → [0,∞), which in the
following is called loss function2. Moreover, let H be the reproducing kernel Hilbert space (RKHS)
of a measurable kernel k : X ×X → R (see [1] for such spaces). In addition, for a finite sequence
T ∈ (X × Y )n and a function f : X → R we define the empirical L-risk by

RL,T (f) :=
1
n

n−1∑
i=0

L(xi, yi, f(xi)) .

Now, for given such a T and a regularization parameter λ > 0 support vector machines construct
a function fT,λ,H : X → R satisfying

λ‖fT,λ,H‖2
H +RL,T (fT,λ,H) = inf

f∈H
λ‖f‖2

H +RL,T (f) . (5)

2Note that this is a more general concept of a loss function than the informal notion of a loss function used in the
introduction.
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It is well-known that if L is a convex loss function in the sense that L(x, y, · ) : R → [0,∞)
is convex for all (x, y) ∈ X × Y , then there exists a unique fT,λ,H . Moreover, in this case (5)
becomes a strictly convex optimization problem which can be solved by, e.g., simple gradient
descent algorithms. However, for specific losses including the least squares loss other, more efficient
algorithmic approaches are used in practice, see [42], [41], [35], and [40].

Let us now introduce two additional properties of loss functions which will be used in this work.

Definition 2.1 A loss function L : X × Y ×R → [0,∞) is called differentiable if L(x, y, · ) : R →
[0,∞) is differentiable for all (x, y) ∈ X × Y . In this case the derivative is denoted by L′(x, y, · ).

Definition 2.2 A loss function L : X × Y × R → [0,∞) is called locally Lipschitz continuous if
for all a ≥ 0 there exists a constant ca ≥ 0 such that for all x ∈ X, y ∈ Y and all t, t′ ∈ [−a, a] we
have ∣∣L(x, y, t)− L(x, y, t′)

∣∣ ≤ ca |t− t′| .

Moreover, the smallest possible constant ca is denoted by |L|a,1.
Finally, L is called Lipschitz continuous if we have |L|1 := supa≥0 |L|a,1 <∞.

Let us now summarize some assumptions on the loss function L which we will use frequently.

Assumption L: The loss L : X × Y × R → [0,∞) is convex, differentiable and locally Lipschitz
continuous in the above sense, and it also satisfies L(x, y, 0) ≤ 1 for all (x, y) ∈ X×Y . Moreover, for
the derivative L′ there exists a constant c ∈ [0,∞) such that for all (x, y, t), (x′, y′, t′) ∈ X × Y ×R
we have ∣∣L′(x, y, t)− L′(x′, y′, t′)

∣∣ ≤ c ‖(x, y, t)− (x′, y′, t′)‖2 (6)

and |L′(x, y, 0)| ≤ c.

Note that combining the two assumptions on L′ yields |L′(x, y, t)| ≤ c (1 + |t|) for all (x, y, t) ∈
X × Y × R, and from this it is not hard to conclude that |L|a,1 ≤ c (1 + a) for all a > 0.

Since the Assumption L is rather complex let us now illustrate it for two particular classes of
loss functions used in many SVM variants.

Example 2.3 A loss L : X×Y ×R → [0,∞) of the form L(x, y, t) = ϕ(yt) for a suitable function ϕ : R → R
and all x ∈ X, y ∈ Y := {−1, 1} and t ∈ R, is called margin-based. Obviously, L is convex, continuous,
(locally) Lipschitz continuous, or differentiable if and only if ϕ is. In addition, convexity of L implies local
Lipschitz continuity of L. Furthermore recall that [6] showed that L is suitable for binary classification tasks
if and only if ϕ is differentiable at 0 with ϕ′(0) < 0.

Let us now consider Assumption L. Obviously, the first part is satisfied if and only if ϕ is convex and
differentiable, and also satisfies ϕ(0) ≤ 1. Moreover, the latter can always be ensured by rescaling ϕ.
Furthermore, we have L′(x, y, t) = yϕ′(yt) and by considering the cases y = y′ and y 6= y′ separately we see
that (6) is satisfied if and only if ϕ′ is Lipschitz continuous and satisfies∣∣ϕ′(t) + ϕ′(t′)

∣∣ ≤ c (1 + |t+ t′|) , t, t′ ∈ R,

for a constant c > 0. Finally, the condition |L′(x, y, 0)| = |ϕ′(0)| ≤ c is always satisfied for sufficiently
large c. From these consideration we conclude that the classical SVM losses defined by ϕ(t) = (1− t)+ and
ϕ(t) = (1 − t)2+, where (x)+ := max{0, x}, do not satisfy Assumption L, whereas the least square loss and
the logistic loss defined ϕ(t) = (1− t)2 and ϕ(t) = ln(1 + exp(−t)), respectively, fullfill L. C

Example 2.4 A loss L : X×Y ×R → [0,∞) of the form L(y, t) = ψ(y−t) for a suitable function ψ : R → R
and all x ∈ X, y ∈ Y ⊂ R and t ∈ R, is called distance-based. Recall that distance-based losses such as
the least squares loss ψ(r) = r2, Huber’s insensitive loss ψ(r) = min{r2,max{1, 2|r| − 1}}, the logistic loss

4



ψ(r) = ln((1+er)2e−r)− ln 4, or the ε-insensitive loss ψ(r) = (|r|−ε)+ are usually used for regression. In the
following we assume that Y is a compact subset of R. Then it is easy to see that L is convex, differentiable,
or locally Lipschitz continuous if and only if ψ is.

Let us now consider Assumption L. Obviously, the first part is satisfied if and only if ψ is convex and
differentiable, and also satisfies supy∈Y ψ(y) ≤ 1. Note that the latter can always be ensured by rescaling
ψ since the convexity of ψ implies its continuity and Y is assumed to be compact. Furthermore, we have
L′(x, y, t) = −ψ′(y − t), and hence we see that (6) is satisfied if and only if ψ′ is Lipschitz continuous.
Finally, every convex and differentiable function is continuously differentiable and hence we can always
ensure |L′(x, y, 0)| = |ψ′(y)| ≤ c. From these considerations we immediately see that all of the above
distance-based losses besides the ε-insensitive loss satisfy Assumption L. C

Finally, in the following we are mainly interested in Gaussian RBF kernels kσ : X × X → R
defined by

kσ(x, x′) := exp(−σ2‖x− x′‖2
2) , x, x′ ∈ X,

where X ⊂ Rd is a non-empty subset and σ > 0 is a free parameter called the width. We write
Hσ(X) for the corresponding RKHSs which are described in some detail in [39]. Finally, for SVMs
using a Gaussian kernel we write fT,λ,σ := fT,λ,Hσ(X) in order to simplify notations.

3 Consistency of SVMs for a General Class of Stochastic Processes

The goal of this section is to establish consistency of SVMs for a class of stochastic processes
satisfying a certain assumption on the decay of certain correlations. This result will then be used
to establish consistency of SVMs for the forecasting problem and suitable combinations of dynamical
systems F and noise processes E .

Let us begin with some notations. To this end let us assume that we have a probability space
(Ω,A, µ), a measurable space (Z,B), and a measurable map T : Ω → Z. Then σ(T ) denotes the
smallest σ-algebra on Ω for which T is measurable. Moreover, µT denotes the T -image measure
of µ, which is defined by µT (B) := µ(T−1(B)), B ⊂ Z measurable. Recall that a stochastic
process Z := (Zn)n≥0, i.e., a sequence of measurable maps Zn : Ω → Z, n ≥ 0, is called identically
distributed if µZn = µZm for all n,m ≥ 0. In this case we write P := µZ0 in the following. Moreover,
Z is called stationary in the wide sense if µ(Zi1+i,Zi2+i) = µ(Zi1

,Zi2
) for all i1, i2, i ≥ 1, and it is said

to be stationary if µ(Zi1+i,...,Zin+i) = µ(Zi1
,...,Zin ) for all n, i, i1, . . . , in ≥ 1.

The following definition introduces a notion of correlation for stochastic processes that will be
used throughout this work.

Definition 3.1 Let (Ω,A, µ) be a probability space, (Z,B) be a measurable space, Z be a Z-valued,
identically distributed process on Ω and P := µZ0. Then for ϕ,ψ ∈ L2(P ) the n-th correlation,
n ≥ 0, is defined by

corZ,n(ψ,ϕ) :=
∫

Ω
ψ(Z0) · ϕ(Zn) dµ−

∫
Z
ψ dP ·

∫
Z
ϕdP .

Moreover, (corZ,n(ψ,ϕ))n≥0 is called the sequence of correlations of ψ and ϕ.

Obviously, if Z is an i.i.d. process we have corZ,n(ψ,ϕ) = 0 for all ϕ,ψ ∈ L2(P ) and n ≥ 0, and
this remains true if ψ ◦ Z0 and ϕ ◦ Zn are uncorrelated. Consequently, if limn→∞ corZ,n(ψ,ϕ) = 0
the corresponding speed of convergence provides information how fast ψ ◦Z0 becomes uncorrelated
from ϕ ◦ Zn. This idea has been intensively used in the statistical literature in terms of, e.g., the
α-mixing coefficients

α(Z, n) := sup
A∈F0

−∞
B∈F∞n

∣∣µ(A ∩B)− µ(A)µ(B)
∣∣ ,
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where F j
i is the initial σ-algebra of Zi, . . . , Zj . These and related coefficients together with examples

including, e.g., certain Markov chains, ARMA processes, and GARCH processes are discussed
in some detail in the survey article [10] and the books [8, 20, 11]. Moreover, for processes Z
satisfying α(Z, n) ≤ cn−α for some constant c > 0 and all n ≥ 1 it was recently described in
[38] how to find a regularization sequence (λn) for which the corresponding SVM is consistent.
Unfortunately, however, it is well-known that every non-trivial ergodic dynamical system does not
satisfy limn→∞ α(Z, n) = 0, and therefore the result of [38] cannot be used to investigate consistency
for the forecasting problem. On the other hand various dynamical systems enjoy a uniform decay
rate over smaller sets of functions such as Lipschitz continuous functions (see Section 4 for some
examples). This leads to the following definition.

Definition 3.2 Let (Ω,A, µ) be a probability space, Z ⊂ Rd be a compact set, Z be a Z-valued,
identically distributed process on Ω and P := µZ0. Moreover, let (γi)i≥0 be a strictly positive
sequence converging to 0. Then Z is said to have a decay of correlations of the order (γi) if for all
ψ,ϕ ∈ Lip(Z) there exists a constant κψ,ϕ ∈ [0,∞) such that∣∣corZ,i(ψ,ϕ)

∣∣ ≤ κψ,ϕ γi , i ≥ 0, (7)

where Lip(Z) denotes the set of all R-valued Lipschitz continuous functions defined on Z.

Let us now summarize our assumptions on the process Z which we will make in the rest of this
section.

Assumption Z: The process Z = (Xi, Yi)i≥0 is defined on the probability space (Ω,A, µ) and is
X × Y -valued, where X ⊂ Rd and Y ⊂ R are compact subsets. Moreover Z is stationary in the
wide sense.

Finally, we will need the following two, mutually exclusive assumptions on the regularization
sequence and the kernel width of SVMs.

Assumption S1: For a fixed strictly positive sequence (γi)i≥0 converging to 0 and a locally
Lipschitz continuous loss L the sequences (λn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfy σn ≥ ln(n+ 1) for
all n ≥ 0,

lim
n→∞

λnσ
4d
n

|L|
λ
−1/2
n ,1

= 0 , and lim
n→∞

|L|3
λ
−1/2
n ,1

σ4
n

nλ4
n

n−1∑
i=0

γi = 0 .

Assumption S2: For a fixed strictly positive sequence (γi)i≥0 converging to 0 and a locally
Lipschitz continuous loss L the sequences (λn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfy σn ≥ ln(n+ 1) for
all n ≥ 0, limn→∞ λnσ

d
n = 0,

lim
n→∞

λnσ
4d
n

|L|
λ
−1/2
n ,1

= ∞ , and lim
n→∞

|L|6
λ
−1/2
n ,1

σ4+12d
n

nλn

n−1∑
i=0

γi = 0 .

In order to illustrate the assumptions S1 and S2 let us first assume that L is Lipschitz continuous.
Furthermore, we assume (γi) ∈ `1 as well as λn := n−α and σn := nβ for n ≥ 1 and constants
α, β > 0. Then Assumption S1 is met if α > 4dβ and α+ β < 1/4, whereas Assumption S2 is met
if α+ (4 + 12d)β < 1 and dβ < α < 4dβ. Moreover, if we take λn := n−α and σn := (lnn)1+β then
Assumption S1 is met if 0 < α < 1/4.
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Let us now consider an arbitrary loss L satisfying Assumption L. Then we discussed after As-
sumption L that we have |L|λ−1/2,1 ≤ c(1 + λ−1/2) for a constant c > 0 and all λ > 0. Let us again
consider the case (γi) ∈ `1, λn := n−α, and σn := nβ for n ≥ 1 and constants α, β > 0. Then
Assumption S1 is met if α > 8

3dβ and 11
8 α+β < 1

4 , whereas Assumption S2 is met if dβ < α < 8
3dβ

and (1 + 3d)β + α < 1
4 . Moreover, if we take λn := n−α and σn := (lnn)1+β then Assumption S1

is met if 0 < α < 2/11.
The illustrations above show that both Assumptions S1 and S2 consist of two contrary conditions,

namely one which implies that λn tends to 0 with a sufficiently fast speed and another one which
ensures that this speed is not too fast. Roughly speaking the first condition guarantees that the
approximation error tends to zero (see Lemma 6.5), but since this simultaneously means that the
statistical error becomes larger, the second condition is needed to ensure that the latter error still
tends to zero (see the proof of Theorem 3.3). This trade-off between approximation and statistical
error is typical for consistent learning algorithms (see the books [19] and [21] for several such
examples).

With the help of these assumptions we can now establish the announced consistency of SVMs:

Theorem 3.3 Let Z = (Xi, Yi)i≥0 be stochastic process satisfying Assumption Z. We write P :=
µ(X0,Y0) and assume that Z has a decay of correlations of some order (γi). In addition, let L :
X × Y × R → [0,∞) be a loss satisfying Assumption L. Then for all sequences (λn) ⊂ (0, 1] and
(σn) ⊂ [1,∞) satisfying either S1 or S2 and all ε ∈ (0, 1] we have

lim
n→∞

µ
(
ω ∈ Ω :

∣∣RL,P (fT (ω),λn,σn
)−R∗

L,P

∣∣ > ε
)

= 0 ,

where T (ω) :=
((
X0(ω), Y0(ω)

)
, . . . ,

(
Xn−1(ω), Yn−1(ω)

))
.

Theorem 3.3 in particular applies to stochastic processes which are α-mixing with rate (γi).
However, the Assumptions S1 and S2 ensuring consistency are substantially stronger than the
ones obtained in [38] for such processes. On the other hand, there are quite a few stochastic
processes which are not α-mixing but still enjoy a reasonably fast decay of correlations. Since we
are mainly interested in the forecasting problem we will delay the discussion of such examples to
the next section.

4 Consistency of SVMs for the Forecasting Problem

In this section we present our main result which establishes consistency of SVM for the forecasting
problem if the dynamical system enjoys a certain decay of correlations. In addition, we discuss
some examples of such dynamical systems.

We begin by first revisiting our informal problem description given in the introduction. To
this end let M ⊂ Rd be a compact set and F : M → M be map such that the dynamical system
D := (F i)i≥0 has an ergodic measure µ. Moreover, let E = (εi)i≥0 be a Rd-valued stochastic process
which is (stochastically) independent of D. Then the process that generates the noisy observations
(1) is (F i + εi)i≥0. In particular, a sequence of observations (x̃0, . . . , x̃n) generated by this process
is of the form (1) for a conjoint initial state. Now recall that given an observation of the system
at some arbitrary time our goal is to forecast the next observable state. Consequently, we will use
the training set

T (x, ε) :=
(
(x̃0, x̃1), . . . , (x̃n−1, x̃n)

)
=
(
(x+ ε0, F (x) + ε1), . . . , (Fn−1(x) + εn−1, F

n(x) + εn)
)

(8)

whose input/output pairs are consecutive observable states. Now note that a single sample
(F i−1(x) + εi−1, F

i(x) + εi) depends on the pair (εi, εi+1) and therefore we have to consider the
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process of such pairs. The following assumption summarizes the needed requirements of this process
N .

Assumption N: For the R2d-valued stochastic process N there exist a constant B > 0 and a
probability measure ν on [−B,B]dN0 such that the coordinate process E := (π0◦Si)i≥0 is stationary
with respect to ν and satisfies N = (π0 ◦ Si, π0 ◦ Si+1)i≥0, where S denotes the shift operator
(xi)i≥0 7→ (xi+1)i≥0 and π0 denotes the projection (xi)i≥0 7→ x0.

Before we state our main result we furthermore note that the input variable x+ε and the output
variable F (x)+ε′ are d-dimensional vectors. Consequently, our notion of a loss function introduced
in Section 2 needs a refinement which captures the ideas of the introduction. To this end we state
the following assumption.

Assumption LD: For the function L : Rd → [0,∞) there exists a distance-based loss satisfying
Assumption L such that its representing function ψ : Rd → [0,∞) satisfies

L(r1, . . . , rd) = ψ(r1) + · · ·+ ψ(rd) , (r1, . . . , rd) ∈ Rd. (9)

Moreover, ψ has a unique global minimum at 0.

Obviously, if L satisfies Assumption LD then L is a loss in the sense of the introduction. Moreover
note that the specific form (9) makes it possible to consider the coordinates of the output variable
separately. Consequently, we will use the forecaster

f̄T,λ,σ :=
(
fT1,λ,σ, . . . , fTd,λ,σ

)
, (10)

where fTj ,λ,σ is the SVM solution obtained by considering the distance-based loss defined by ψ and
the training set Tj := ((x̃0, πj(x̃1)), . . . , (x̃n−1, πj(x̃n))) which is obtained by projecting the output
variable of T onto its jth-coordinate via the projection πj . In other words we build the forecaster
f̄T,λ,σ by training d different SVMs on the training sets T1, . . . , Td.

With the help of these preparations we can now present our main result which establishes con-
sistency for such a forecaster.

Theorem 4.1 Let M ⊂ Rd be a compact set, F : M →M be a Lipschitz continuous map such that
the dynamical system D := (F i)i≥0 has a unique ergodic measure µ, and N be a stochastic process
satisfying Assumption N. Assume that both processes D and N have a decay of correlations of the
order (γi). Moreover, let L : Rd → [0,∞) be a function satisfying Assumption LD. Then for all
sequences (λn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfying either S1 or S2 and all ε ∈ (0, 1] we have

lim
n→∞

µ⊗ ν
(
(x, ε) ∈M × [−B,B]dN :

∣∣RL,P (f̄T (x,ε),λn,σn
)−R∗

L,P

∣∣ > ε
)

= 0 ,

where T (x, ε) is defined by (8) and the risks are given by (2) and (3).

Note that if E is an i.i.d. process then N has a decay of correlations of any order. Moreover, if
E is α-mixing with mixing rate (γi) then N has a decay of correlations of order (γi). Finally, if D
has a decay of correlations (γ(1)

i ) and N has a decay of correlations (γ(2)
i ) then they obviously have

both a decay of correlations (γi), where γi := max{γ(1)
i , γ

(2)
i }. In particular, if the noise has slowly

decaying correlations this will slow down learning even though the system itself, which we want to
forecast may have a fast decay of correlations.

Obviously, the function L(r) := ‖r‖2
2, r ∈ Rd, satisfies Assumption LD since the least squares

loss satisfies Assumption L as we have discussed in Example 2.4. Let us now additionally assume
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that the noise is pairwise independent , i.e. εi and εi′ are independent if i 6= i′, and centered, i.e. it
satisfies Eε∼ν π0(ε) = 0. For a forecaster f = (f1, . . . , fd) : Rd → Rd we then obtain

RL,P (f) =
∫ ∫ d∑

j=1

(
πj(F (x) + ε1)− fj(x+ ε0)

)2
ν(dε)µ(dx)

=
∫ ∫ d∑

j=1

(
πj(F (x))− fj(x+ ε0)

)2
ν(dε)µ(dx) +

∫
‖ε0‖2

2 ν(dε)

=: RL,P̄ (f) +
∫
‖ε0‖2

2 ν(dε) ,

where πj : Rd → R denotes the jth-coordinate projection. Consequently, a forecaster f which
approximately minimizes the L-risk is also an approximate forecaster of the true next state in
the sense of RL,P̄ ( · ). Before we combine this observation with Theorem 4.1 let us first rephrase
Assumptions S1 and S2 for the least squares loss.

Assumption S1-LS: For a fixed strictly positive sequence (γi)i≥0 converging to 0 and a locally
Lipschitz continuous loss L the sequences (λn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfy σn ≥ ln(n+ 1) for
all n ≥ 0,

lim
n→∞

λnσ
8d/3
n = 0 , and lim

n→∞

σ4
n

nλ
11/2
n

n−1∑
i=0

γi = 0 .

Assumption S2-LS: For a fixed strictly positive sequence (γi)i≥0 converging to 0 and a locally
Lipschitz continuous loss L the sequences (λn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfy σn ≥ ln(n+ 1) for
all n ≥ 0, limn→∞ λnσ

d
n = 0,

lim
n→∞

λnσ
8d/3
n = ∞ , and lim

n→∞

σ4+12d
n

nλ4
n

n−1∑
i=0

γi = 0 .

Now we can state a result showing that SVMs using a least squares loss can be used to forecast
the next true state of the dynamical system if the observational noise is sufficiently benign.

Corollary 4.2 Let M ⊂ Rd be a compact set, F : M → M be a Lipschitz continuous map such
that the dynamical system D := (F i)i≥0 has a unique ergodic measure µ. Moreover, let E = (εi)i≥0

be an i.i.d. process of [−B,B]d-valued and centered random variables. Assume that D has a decay
of correlations of the order (γi). Moreover, let L : Rd → [0,∞) be defined by L(r) := ‖r‖2

2, r ∈ Rd.
Then for all sequences (λn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfying either S1-LS or S2-LS and all
ε ∈ (0, 1] we have

lim
n→∞

µ⊗ ν
(
(x, ε) ∈M × [−B,B]dN :

∣∣RL,P̄ (f̄T (x,ε),λn,σn
)−R∗

L,P̄

∣∣ > ε
)

= 0 ,

where T (x, ε) is defined by (8).

It is interesting to note that the above corollary does not require the noise to be symmetric.
Instead it only requires centered noise, i.e. the observations are not systematically biased in a
certain direction. The following remark rephrases Theorem 4.1 and its corollary for situations with
summable decays of correlations.
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Remark 4.3 (Universal consistency for summable correlations) It is important to note that if the
sequence (γi) bounding the correlation sequence is summable, i.e.,

∑
γi <∞ then the Assumptions S1 and

S2, or S1-LS and S2-LS, respectively, are independent of both the dynamical system and the observational
noise process. Consequently, using sequences satisfying these assumptions yields an SVM which is consistent
for all such pairs of dynamical systems and observational noise processes. In other words, such an SVM
can learn the optimal forecaster without knowing specifics of the dynamical systems and the observational
noise. To be a bit more specific, let us assume that we use the least squares loss and sequences λn := n−α

and σn := (1 + lnn)1+β , n ≥ 1, for fixed 0 < α < 2/11 and β > 0. Then the corresponding SVM is
consistent for all bounded observational noise processes having a summable α-mixing rate and all ergodic
dynamical systems on M which are defined by a Lipschitz continuous F : M → M and have a summable
decay of correlations. Moreover, if the noise process is also i.i.d. and centered then this SVM actually learns
to forecast the next true state.

Let us finally discuss some examples of classes of dynamical systems enjoying at least a polynomial
decay of correlations. Since the existing literature on such systems is vast these examples are only
meant to be illustrations for situations where Theorem 4.1 can be applied, and are not intended to
provide an overview of known results. However, compilations of known results can be found in the
survey articles of V. Baladi [3] and S. Luzzatto [27], and the book [2] of V. Baladi.

Example 4.4 (Smooth expanding dynamics) Let M be a compact connected Riemannian manifold
and F : M →M be C1+ε for some ε > 0. Furthermore assume that there exists constants c > 0 and λ > 1
such that

max
{
‖DFn

x (v)‖ : x ∈M,v ∈ TxM with ‖v‖ = 1
}
≥ cλn

for all n ≥ 0, where TxM denotes the tangent space of M at x and DFn
x denotes the derivative of Fn at x.

Then it is a classical result that F possesses a unique ergodic measure which is absolutely continuous with
respect the Riemannian volume. Moreover, it is well-known (see, e.g., [32] and the references mentioned in
[27, Theorem 5]) that there exists a τ ∈ (0, 1) such that the dynamical system has decay of correlations of
the order (τ i). Generalizations of this result to piecewise smooth and piecewise (non)-uniformly expanding
dynamics are discussed in [3]. Finally, [27, Theorem 10] recalls results (together with references) for non-
uniformly expanding dynamics having either exponential or polynomial decay of correlations.

Example 4.5 (Smooth hyperbolic dynamics) Assume that F is a topologically mixing C1+ε Anosov
or Axiom A diffeomorphism. Then it is well-known (see, e.g., [9, 33]) that there exists a τ ∈ (0, 1) such
that the dynamical system has decay of correlations of the order (τ i) for some τ ∈ (0, 1). Moreover, [3] lists
various extensions of this result to, e.g., smooth non-uniformly hyperbolic systems and hyperbolic systems
with singularities.

Besides these classical results and their extensions, [3] also compiles a list of “parabolic” or
“intermittent” systems which have a polynomial decay of correlations.

5 Discussion

The goal of this work was to show that in principle support vector machines can learn how to predict
one-step-ahead noisy observation of a dynamical system without knowing specifics of the dynamical
system or the observational noise besides a certain, rather general stochasticity. However, there
remain several open questions which can be subject to further research:

More General Losses and Kernels. In the “statistical part” of our analysis, we used an ap-
proach which is based on a “stability” argument. However, it is also possible to use a “skele-
ton” argument based on covering numbers, instead. Utilizing the latter it seems possible
to relax the assumptions on the loss L by making stronger assumptions on both (λn) and
(σn). A particular loss which is interesting in this direction would be the ε-insensitive loss
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used in classical SVMs for regression. Another possible extension of our work is considering
different kernels, such as the kernels that generate Sobolev spaces. In fact, we only focused
on Gaussian RBF kernels since these kernels are most commonly used in practice.

Learning Rates. So far we have only shown that the risk of the SVM solution converges to the
smallest possible risk, however, for practical considerations the speed of this convergence
is of great importance, too. The proof we utilized already gives such learning rates if a
quantitative version of the Approximation Lemma 6.5 is available, which is possible if, e.g.,
quantitative assumptions on the smoothness of F and the regularity of ν are made. However,
since we conjecture that the statistical part of our analysis is not sharp we did not present
a corresponding result. In this regard we note that recently [14] established a concentration
result for piecewise regular expanding and topologically mixing maps of the interval [0, 1]
which is substantially stronger than our elementary Chebyshev inequality of Lemma 6.9. We
strongly believe that such a concentration result can be used to substantially sharpen the
statistical part of our analysis.

Dynamic Noise Systems. Another extension of the current work is to consider dynamical sys-
tems which are perturbed by some noise. Our general consistency result in Theorem 3.3
suggests that such an extension is possible whenever the perturbed system has a decay of
correlations. In this regard we note that for certain perturbed systems of expanding maps
decays of correlations have already been established in [5], and it would be interesting to
check whether they can be used to prove consistency of SVMs.

Longer Past. So far we only used the present observation to forecast the next observation, but
it is not hard to check that in almost any system/noise combination the minimal risk R∗

L,P

reduces if one allows to use additional past observations. On the other hand it appears that
the learning problem becomes harder in this case since we have to approximate a function
which lives on a higher dimensional input space, and hence there seems to be a trade-off for
finite sample sizes. While investigating this trade-off in more detail seems to be possible with
the techniques developed in this work we again assume that the statistical part of our analysis
is not sharp enough to obtain a meaningful picture.

Acknowledgment.
The authors gratefully thank V. Baladi for pointing us to the unpublished note [13] of P. Collet.

6 Proof of Theorem 3.3

The goal of this section is to prove Theorem 3.3. Since the proof requires several preliminary results
we divided this section into subsections, which provide these prerequisites.

6.1 Some Basics on the Decay of Correlations

The main goal of this section is to establish some uniform bounds on the correlation sequence.
Let us begin with the following lemma which establishes some basic properties of the correlation
sequence.

Lemma 6.1 Let (Ω,A, µ) be a probability space, (Z,B) be a measurable space, Z be a Z-valued,
identically distributed process on Ω and P := µZ0. Then the sequence of correlations defines a
bilinear operator corZ : L2(P )× L2(P ) → `∞ called the correlation operator.
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Proof: The bi-linearity is obvious and corZ(ψ,ϕ) ∈ `∞ follows from∣∣∣∫
Ω
ψ(Z0) · ϕ(Zn) dµ

∣∣∣ ≤ ‖ψ ◦ Z0‖L2(µ)‖ϕ ◦ Zn‖L2(µ) = ‖ψ‖L2(P )‖ϕ‖L2(P ) .

The following key theorem which goes back to an unpublished note [13] of P. Collet (see also
p. 101 in [4]) can be used to establish continuity of the correlation operator. Before we present
this result let us first recall that a Banach space E is said to be continuously embedded into the
Banach space F if E ⊂ F and the natural inclusion map id : E → F is continuous.

Theorem 6.2 Let (Ω,A, µ) be a probability space, (Z,B) be a measurable space, Z be a Z-valued,
identically distributed process on Ω and P := µZ0. Moreover, let E1 and E2 be Banach spaces that
are continuously embedded into L2(P ) and let F be a Banach space that is continuously embedded
into `∞. If for all ψ ∈ E1 and all ϕ ∈ E2 the correlation operator satisfies

corZ(ψ,ϕ) ∈ F

then there exists a constant c ∈ [0,∞) such that

‖ corZ(ψ,ϕ)‖F ≤ c · ‖ψ‖E1‖ϕ‖E2

for all ψ ∈ E1 and all ϕ ∈ E2. The smallest such constant c is denoted by ‖ corZ : E1 × E2 → F‖.

For the sake of completeness the proof of this key result can be found in the Appendix. The
most obvious examples of Banach spaces F in the above theorem are the spaces `p. However, in
the literature on dynamical systems results on the sequence of correlations are usually stated in
the form ∣∣corZ,n(ψ,ϕ)

∣∣ ≤ κψ,ϕ γn , n ≥ 0

where (γn) is a strictly positive sequence converging to 0 and κψ,ϕ is a constant depending on ψ
and ϕ. To apply Theorem 6.2 in this situation we obviously need Banach spaces which capture
such a behaviour of corZ( · , · ). Therefore, let us fix a strictly positive sequence γ := (γn)n≥0 such
that limn→∞ γn = 0. For a sequence b := (bn) ⊂ R we define

‖b‖Λ(γ) := sup
n≥0

|bn|
γn

.

Moreover, we write
Λ(γ) :=

{
(bn) ⊂ R : ‖(bn)‖Λ(γ) <∞

}
.

The following lemma establishes some basic properties of the pair (Λ(γ), ‖ · ‖Λ(γ)).

Lemma 6.3 The pair (Λ(γ), ‖ · ‖Λ(γ)) is a Banach space and we have ‖id : Λ(γ) → `∞‖ ≤ ‖γ‖∞.

Proof: The fact that (Λ(γ), ‖ · ‖Λ(γ)) is a normed space is elementary to prove. Moreover, we have

‖b‖Λ(γ) = sup
n≥0

|bn|
γn

≥ sup
n≥0

|bn|
‖γ‖∞

=
‖b‖∞
‖γ‖∞

,

and hence we find ‖id : Λ(γ) → `∞‖ ≤ ‖γ‖∞. Finally, let (b(i))i≥1 be a Cauchy sequence in Λ(γ).
The previous step shows that it is also a Cauchy sequence in `∞, and by the completeness of `∞
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there consequently exists a sequence b := (bn) ∈ `∞ such that limi→∞ ‖b(i) − b‖∞ = 0. Let us now
fix an ε > 0. Then there exists an index i0 ≥ 0 such that for all i, j ≥ i0 we have ‖b(i)−b(j)‖Λ(γ) ≤ ε.
Consequently, for fixed N ≥ 0 we have

sup
n=0,...,N

|b(i)n − b
(j)
n |

γn
≤ ‖b(i) − b(j)‖Λ(γ) ≤ ε ,

and by taking the limit j →∞ we conclude

sup
n=0,...,N

|b(i)n − bn|
γn

≤ ε .

However, N was arbitrary and hence we find ‖b(i) − b‖Λ(γ) ≤ ε for all i ≥ i0. In other words we
have shown that (b(i))i≥1 converges to b in ‖ · ‖Λ(γ), i.e., (Λ(γ), ‖ · ‖Λ(γ)) is complete.

Combing the above lemma with Theorem 6.2 we immediately obtain the following corollary.

Corollary 6.4 Let (Ω,A, µ) be a probability space, (Z,B) be a measurable space, Z be a Z-valued,
identically distributed process on Ω and P := µZ0. Moreover, let E1 and E2 be Banach spaces that
are continuously embedded into L2(P ). In addition, let γ := (γn)n≥0 be a strictly positive sequence
such that limn→∞ γn = 0. If for all ψ ∈ E1 and all ϕ ∈ E2 there exists a constant κψ,ϕ ∈ [0,∞)
such that ∣∣corZ,n(ψ,ϕ)

∣∣ ≤ κψ,ϕ γn

for all n ≥ 0, then there exists a constant c ∈ [0,∞) such that∣∣corZ,n(ψ,ϕ)
∣∣ ≤ c ‖ψ‖E1 · ‖ϕ‖E2 · γn

for all ψ ∈ E1, ϕ ∈ E2 and all n ≥ 0.

6.2 Some Properties of Gaussian RBF Kernels

In this subsection we establish some properties of Gaussian RBF kernels which will be heavily used
in the proof of Theorem 3.3. Let us begin with an approximation result.

Lemma 6.5 Let X ⊂ Rd and Y ⊂ R be compact subsets, L : X × Y × R → [0,∞) be a convex
locally Lipschitz continuous loss and P be a probability measure on X ×Y such that RL,P (0) <∞.
Then for all sequences (λn) ⊂ (0, 1] and (σn) ⊂ [1,∞) satisfying

lim
n→∞

λnσ
d
n = 0 (11)

we have
lim
n→∞

(
inf
f∈H

λn‖f‖2
Hσn (X) +RL,P (f)

)
= R∗

L,P .

Proof: For σ > 0 we write R∗
L,P,Hσ(X) := inf{RL,P (f) : f ∈ Hσ(X)}. Since L is locally Lipschitz

continuous and RL,P (0) <∞ the discussion after (4) in [37] shows that it is a P -integrable Nemitski
loss in the sense of [37]. Now recall (see [36]) that Hσ(X) is universal, i.e. it is dense in C(X), and
hence [37, Corollary 1] shows R∗

L,P,Hσ(X) = R∗
L,P for all σ > 0. Let us now fix an ε > 0. The above

discussion then shows that there exists an fε ∈ H1(X) such that

RL,P (fε) ≤ R∗
L,P + ε .
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Furthermore (11) implies the existence of an n0 ≥ 0 such that

λnσ
d
n ≤ ε ‖fε‖−2

H1(X)

for all n ≥ n0. Since σn ≥ 1 we also know fε ∈ Hσn(X) and ‖fε‖2
Hσn (X) ≤ σdn‖fε‖2

H1(X) by [39,
Corollary 6], and therefore we obtain

R∗
L,P ≤ inf

f∈H
λn‖f‖2

Hσn (X) +RL,P (f) ≤ λn‖fε‖2
Hσn (X) +RL,P (fε) ≤ R∗

L,P + 2ε

for all n ≥ n0. From this we easily deduce the assertion.

Before we establish the next result let us recall that a function f : X → R on a subset X ⊂ Rd is
called Lipschitz continuous if there exist a constant c ∈ [0,∞) such that |f(x)− f(x′)| ≤ c‖x−x′‖2

for all x, x′ ∈ X. In the following the smallest such constant is denoted by |f |1 and the set of all
Lipschitz continuous functions is denoted by Lip(X). Moreover, recall that if X is compact then
Lip(X) together with the norm ‖f‖Lip(X) := max{‖f‖∞, |f |1} forms a Banach space. Moreover, in
this case Lip(X) is also closed under multiplication. Indeed, for f, g ∈ Lip(X) and x, x′ ∈ X we
have ∣∣f(x)g(x)− f(x′)g(x′)

∣∣ ≤
∣∣f(x)g(x)− f(x)g(x′)

∣∣+ ∣∣f(x)g(x′)− f(x′)g(x′)
∣∣

≤ ‖f‖∞ · |g|1 |x− x′|+ |f |1 |x− x′| · ‖g‖∞
≤ 2‖f‖Lip(X) ‖g‖Lip(X) |x− x′| ,

and hence we find fg ∈ Lip(X) with ‖fg‖Lip(X) ≤ 2‖f‖Lip(X) ‖g‖Lip(X).
Our next result shows that every function in Hσ(X) is Lipschitz continuous.

Lemma 6.6 Let X ⊂ Rd be a non-empty set and σ > 0. Then every f ∈ Hσ(X) is Lipschitz
continuous with |f |1 ≤

√
2σ‖f‖Hσ(X).

Proof: Let us write Φ : X → Hσ(X) for the canonical feature map defined by Φ(x) := kσ(x, .).
Now recall that Φ satisfies the reproducing property

f(x) = 〈Φ(x), f〉 , x ∈ X, f ∈ Hσ(X),

and hence in particular kσ(x′, x) = 〈Φ(x),Φ(x′)〉 for all x, x′ ∈ X. Using these equalities together
with 1− e−t ≤ t for t ≥ 0 we obtain

|f(x)− f(x′)| =
∣∣〈Φ(x)− Φ(x′), f〉

∣∣ ≤ ‖f‖Hσ(X) · ‖Φ(x)− Φ(x′)‖Hσ(X)

= ‖f‖Hσ(X)

√
〈Φ(x),Φ(x)〉+ 〈Φ(x′),Φ(x′)〉 − 2〈Φ(x),Φ(x′)〉

= ‖f‖Hσ(X)

√
2− 2 exp(−σ2‖x− x′‖2

2)

≤
√

2σ‖f‖Hσ(X)‖x− x′‖2 ,

i.e., we have proved the assertion.

In the following we consider certain orthonormal bases (ONBs) of Hσ(X). To this end let us first
recall that in [39, Theorem 5] it was shown that (en)n≥0, where en : R → R is defined by

en(x) :=

√
2nσ2n

n!
xne−σ

2x2
, x ∈ R, (12)

forms an ONB of Hσ(R). Moreover, it was shown that if X ⊂ R has a non-empty interior the
restrictions of en to X form an ONB of Hσ(X). The following lemma establishes upper bounds on
‖en‖∞ if X is a closed interval.
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Lemma 6.7 Let σ > 0 and a > 0 be fixed real numbers and (en)n≥0 be the ONB of Hσ([−a, a]),
where en is defined by the restriction of (12) to [−a, a]. Then we have ‖en‖∞ ≤ (2πn)−1/4 for all
n ≥ 1 and

‖en‖∞ ≤
√

2na2nσ2n

n!
e−a

2σ2
(13)

for all n ≥ 2a2σ2. In addition, for n ≥ 8ea2σ2 we have( ∞∑
i=n+1

‖ei‖2
∞

)1/2

≤
( 2
π(n+ 1)

)1/4
2−(n+1)e−a

2σ2
, (14)

and for aσ ≥ 1 we also have ( ∞∑
i=0

‖ei‖2
∞

)1/2

≤
√

6aσ . (15)

Proof: Elementary calculus shows

e′n(x) =

√
2nσ2n

n!
xn−1e−σ

2x2(
n− 2σ2x2

)
for all n ≥ 1 and x ∈ R. From this we conclude e′n(x

∗) = 0 if and only if x∗ = ±
√

n
2σ2 . Now

n < 2a2σ2 implies |x∗| < a and then it is not hard to see that |en| attains its maximum at these
x∗. Consequently, we obtain

‖en‖∞ ≤
√
nn

n!
e−n/2 ≤

√
nn√

2πnnne−n
e−n/2 = (2πn)−1/4

by Stirling’s formula. On the other hand, n ≥ 2a2σ2 implies |x∗| ≥ a and in this case it is not hard
to see that |en| attains its maximum at ±a. From these considerations we conclude (13). For the
first part of the lemma it thus remains to show that ‖en‖∞ ≤ (2πn)−1/4 for all n ≥ 2a2σ2. To this
end we apply Stirling’s formula to the already obtained (13). This yields

‖en‖∞ ≤
√

2na2nσ2n

n!
e−a

2σ2 ≤

√
2na2nσ2nen√

2πnnn
e−a

2σ2
= (2πn)−1/4

(
2a2σ2e1−2a2σ2/n

n

)n/2
≤ (2πn)−1/4 ,

where in the last step we used that te1−t ≤ 1 for all t ≥ 0.
For the proof of (14) we recall that the remainder of the Taylor series of the exponential function
satisfies

∞∑
i=n+1

yi

i!
≤ 2

|y|n+1

(n+ 1)!

for |y| ≤ 1 + n/2. Since n ≥ 8ea2σ2 implies 2a2σ2 ≤ 1 + n/2 we consequently obtain
∞∑

i=n+1

‖ei‖2
∞ ≤

∞∑
i=n+1

2ia2iσ2i

i!
e−2a2σ2 ≤ 2n+2a2(n+1)σ2(n+1)

(n+ 1)!
e−2a2σ2

≤ 2
2n+1a2(n+1)σ2(n+1)e(n+1)√

2π(n+ 1) (n+ 1)(n+1)
e−2a2σ2

=
( 2
π(n+ 1)

)1/2(2ea2σ2

n+ 1

)n+1
e−2a2σ2

≤
( 2
π(n+ 1)

)1/2
4−(n+1)e−2a2σ2

.
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From this we easily deduce (14). Finally, for the proof of (15) we observe that

d8ea2σ2e∑
i=0

‖ei‖2
∞ ≤ 1 + (2π)−1/2 +

d8ea2σ2e∑
i=2

(2πi)−1/2

≤ 1 + (2π)−1/2 + (2π)−1/2

∫ 8ea2σ2+1

1
x−1/2dx

≤ 1 + (2π)−1/2 + (e/π)−1/24aσ
≤ 3/2 + 4aσ .

Combining this estimate with (14) we then obtain

∞∑
i=0

‖ei‖2
∞ =

d8ea2σ2e∑
i=0

‖ei‖2
∞ +

∞∑
i=d8ea2σ2e+1

‖ei‖2
∞

≤ 3/2 + 4aσ +
( 2
π(d8ea2σ2e+ 1)

)1/2
4−(d8ea2σ2e+1)e−2a2σ2

≤ 3/2 + 4aσ +
( 1

8eπa2σ2

)1/2
4−8ea2σ2

e−2a2σ2

≤ 2 + 4aσ ,

and from the latter we easily obtain (15).

Our next goal is to generalize the above result to the multi-dimensional case. To this end recall
that the tensor product f⊗g : X×X → R of two functions f, g : X → R is defined by f⊗g(x, x′) :=
f(x)g(x′), x, x′ ∈ X. Obviously, for bounded functions we have ‖f ⊗ g‖∞ = ‖f‖∞ ‖g‖∞.

In the following we will deal with multi-indexes η = (n1, . . . , nd) ∈ Nd
0 and use the notation η ≥ n

if n ∈ N0 and ni ≥ n for all i = 1, . . . , d. Moreover, for η = (n1, . . . , nd) ∈ Nd
0 we write

eη := en1 ⊗ · · · ⊗ end
,

where eni is defined by (12). Then [39, Theorem 5] shows that (eη)η∈Nd
0

is an ONB of Hσ(Rd)
and the restrictions of the members of this ONB to [−a, a]d form an ONB of Hσ([−a, a]d). The
following lemma generalizes the estimates of Lemma 6.7 to this multi-dimensional ONB.

Corollary 6.8 For σ > 0 and a > 0 satisfying aσ ≥ 1, and d ∈ N let (eη)η∈Nd
0

be the restriction of
the above ONB to [−a, a]d. Then for n ≥ 8ea2σ2 we have( ∑

η∈Nd
0

∃i:ηi>n

‖eη‖2
∞

)1/2

≤
√
d e−a

2σ2
(6aσ)(d−1)/2

( 2
π(n+ 1)

)1/4
2−(n+1) .

Proof: Using ‖ei1 ⊗ · · · ⊗ eid‖∞ = ‖ei1‖∞ · · · ‖eid‖∞ we obtain

∑
η∈Nd

0
∃i:ηi>n

‖eη‖2
∞ ≤ d

∞∑
i1=n+1

∞∑
i2=0

· · ·
∞∑
id=0

d∏
j=1

‖eij‖2
∞ = d

( ∞∑
i=n+1

‖ei‖2
∞

)( ∞∑
i=0

‖ei‖2
∞

)d−1

≤ d
( 2
π(n+ 1)

)1/2
2−2(n+1)e−2a2σ2

(6aσ)d−1

by Lemma 6.7. From this we immediately obtain the assertion.
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6.3 Some concentration inequalities in RKHSs

In this subsection we will establish a concentration inequality for RKHS-valued functions and for
processes which have a certain decay of correlations. This concentration result will then be the key
ingredient in the statistical analysis of the proof of Theorem 3.3.

Let us begin by showing a simple concentration result in the form of Chebyshev’s inequality for
R-valued functions and processes with a decay of correlations.

Lemma 6.9 Let Z = (Zi)i≥0 be a Z-valued process on (Ω,A, µ) that is stationary in the wide
sense. Then for P := µZ0, f ∈ L2(P ), n ≥ 1, and δ > 0 we have

µ

(
ω ∈ Ω :

∣∣∣ 1
n

n−1∑
i=0

f ◦ Zi(ω)− EP f
∣∣∣ ≥ δ

)
≤ 2
nδ2

n−1∑
i=0

corZ,i(f, f) . (16)

Proof: By Markov’s inequality we immediately obtain

µ

(
ω ∈ Ω :

∣∣∣ 1
n

n−1∑
i=0

f ◦ Zi(ω)− EP f
∣∣∣ ≥ δ

)
≤ 1
n2δ2

Eµ
(n−1∑
i=0

f ◦ Zi − EP f
)2

.

Moreover, a simple calculation shows

Eµ
( n−1∑
i=0

f ◦ Zi − EP f
)2

=
n−1∑
i=0

(
Eµ(f ◦ Zi)2 − (EP f)2

)
+2

n−1∑
i=0

i−1∑
j=0

(
Eµf ◦ Zif ◦ Zj − EP fEP f

)
≤ 2n

n−1∑
i=0

corZ,i(f, f) .

Combining both estimates immediately yields the assertion.

We will see in Subsection 6.4 that the proof of Theorem 3.3 heavily relies on the estimate∥∥fP,λ,H − fT,λ,H
∥∥
H

≤ 1
λ

∥∥EPhλΦ− EThλΦ
∥∥
H
,

where fP,λ,H is the SVM solution (see Theorem 6.13 for an exact definition) one obtains by replacing
the empirical risk RL,T ( · ) with the true risk RL,P ( · ) in (5), hλ is a function independent of the
training set T , Φ : X → H is the canonical feature map x 7→ k(x, · ) of a kernel k, and ET denotes
the expectation with respect to the empirical measure defined by T , i.e. ET g := n−1

∑n
i=1 g(xi, yi).

Consequently, our next goal is to estimate terms of the form ‖EPhΦ − EThΦ‖H . To this end we
begin with the following lemma which, roughly speaking, will be used to reduce RKHS-valued
functions to R-valued functions.

Lemma 6.10 Let H be the separable RKHS of a bounded measurable kernel k : X ×X → R, let
Φ : X → H be the corresponding canonical feature map and (ei)i≥0 be an ONB of H. Moreover, let
Y be another measurable space, P and Q be probability measures on X×Y , and h ∈ L1(P )∩L1(Q).
Then for all n ≥ 0 we have

∥∥EPhΦ− EQhΦ
∥∥
H
≤
( n∑
i=0

∣∣EPhei − EQhei
∣∣2)1/2

+
( ∞∑
i=n+1

‖ei‖2
∞

)1/2(
EP |h|+ EQ|h|

)
.
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Proof: Let us define Sn : H → span{e0, . . . , en} by
∑

i≥0〈f, ei〉ei 7→
∑n

i=0〈f, ei〉ei. Then we have

∥∥SnΦ(x)− Φ(x)
∥∥2

H
=
∥∥∥∥ ∞∑
i=n+1

〈Φ(x), ei〉ei
∥∥∥∥2

H

=
∞∑

i=n+1

∣∣〈Φ(x), ei〉
∣∣2 =

∞∑
i=n+1

|ei(x)|2

by the reproducing property and hence we obtain∥∥EPhΦ− EQhΦ
∥∥
H

≤
∥∥EPhΦ− EPhSnΦ

∥∥
H

+
∥∥EPhSnΦ− EQhSnΦ

∥∥
H

+
∥∥EQhSnΦ− EQhΦ

∥∥
H

≤ EP |h| ‖Φ− SnΦ‖H +
∥∥EPhSnΦ− EQhSnΦ

∥∥
H

+ EQ|h| ‖Φ− SnΦ‖H

≤
∥∥EPhSnΦ− EQhSnΦ

∥∥
H

+
( ∞∑
i=n+1

‖ei‖2
∞

)1/2(
EP |h|+ EQ|h|

)
.

Moreover, using the reproducing property we have 〈EPhΦ, ei〉 = EPhei and 〈EQhΦ, ei〉 = EQhei,
and thus we conclude∥∥EPhSnΦ− EQhSnΦ

∥∥2

H
=
∥∥∥∥ n∑
i=0

〈EPhΦ− EQhΦ, ei〉ei
∥∥∥∥2

H

=
n∑
i=0

∣∣〈EPhΦ− EQhΦ, ei〉
∣∣2

=
n∑
i=0

∣∣EPhei − EQhei
∣∣2 .

Combining this equality with the previous estimate we then obtain the assertion.

Before we can establish the concentration inequality for RKHS-valued functions we finally need
the following simple lemma.

Lemma 6.11 For d ≥ 1 and t > 18 d ln(d) we have t−1/42−t ≤ t−2d.

Proof: Since 2−t = e−t ln 2 and t−2d+1/4 = e(1/4−2d) ln t the assertion is equivalent to

t ln 2 + (1/4− 2d) ln t ≥ 0 . (17)

Let us first prove the case d = 1. Then (17) reduces to the assertion h(t) := t ln 2− 7
4 ln t ≥ 0. To

establish the latter, note that we have h′(t) = ln 2− 7
4 t
−1 and hence h′(t∗) = 0 holds if and only if

t∗ = 7
4 ln 2 . Simple considerations then show that h has its only global minimum at t∗ and therefore

we have h(t) ≥ h(t∗) ≥ 7
4 −

7
4 ln( 7

ln 16) > 0.
Let us now consider the case d ≥ 2. To this end we fix a t > 18 d ln(d). Then there exists a unique
x > 18 with t = x d ln(d), and hence we obtain

t ln 2 + (1/4− 2d) ln t = x d ln(d) ln 2 + 1/4 ln
(
x d ln(d)

)
− 2d ln

(
x d ln(d)

)
> xd ln(d) ln 2− 2d ln

(
x d ln(d)

)
= d

(
x ln(d) ln 2− 2 lnx− 2 ln d− 2 ln(ln(d)

)
> d

(
x ln(d) ln 2− 2

ln d
ln 2

lnx− 2 ln d− 2 ln d
)

= d ln(d)
(
x ln 2− 2

ln 2
lnx− 4

)
,

where in the last estimate we used d ≥ 2. Now it is elementary to check that x 7→ x ln 2− 2
ln 2 lnx−4

is increasing on [2(ln 2)−2,∞) and since 18 ln 2− 2
ln 2 ln 18− 4 > 0 we then obtain (17).
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Theorem 6.12 For σ > 0 and a > 0 satisfying aσ ≥ 1, and d ≥ 1 let Φ : [−a, a]d → Hσ([−a, a]d)
be the canonical feature map of the Gaussian RBF kernel and let (eη)η∈Nd

0
be the ONB of

Hσ([−a, a]d) which is considered in Corollary 6.8. In addition, let Y be a measurable space and let
Z = (Xi, Yi)i≥0 be a [−a, a]d × Y -valued process on (Ω,A, µ) that is stationary in the wide sense.
Furthermore, let (γi)i≥0 be a strictly positive null sequence, h : [−a, a]d × Y → R be a bounded
measurable function, and Kh ∈ [1,∞) be a constant such that

‖h‖∞ ≤ Kh (18)

and
corZ,i(heη, heη) ≤ Khγi (19)

for all i ≥ 0, η ∈ Nd
0. Then for all ε > 0 satisfying both ε ≤ (1 + 8ea2σ2)−2d and ε ≤ (18d ln d)−2d,

and all n ≥ 1 we have

µ
(
ω ∈ Ω : ‖EPhΦ− ET (ω)hΦ‖H ≤ ε

)
≥ 1−

2(1 + 1
8ea2σ2 )dKhC

3
aσ,d,h

nε3

n−1∑
i=0

γi ,

where ET (ω) denotes the expectation operator with respect to the empirical measure associated to
T (ω) := (Z0(ω), . . . , Zn−1(ω)), i.e. ET (ω)g := 1

n

∑n−1
i=0 g(Xi(ω), Yi(ω)), EPhΦ denotes the Bochner

integral of hΦ in H, and

Caσ,d,h :=
(
1 +

1
8ea2σ2

) d
2 + 2

√
d e−a

2σ2
(6aσ)

d−1
2 Kh .

Proof: Let us write

δ :=
( ε

Caσ,d,h

)5/4
.

Using Caσ,d,h ≥ (1 + 1
8ea2σ2 )

d
2 ≥ 1 and ε ≤ (1 + 8ea2σ2)−2d we then find

δ ≤ (1 + 8ea2σ2)−5d/2 ,

and consequently, there exists a natural number m ≥ 8ea2σ2 such that (m+ 1)−5d/2 ≤ δ < m−5d/2.
Moreover, for later use we note that using Caσ,d,h ≥ 1 and ε ≤ (18d ln d)−2d yields

δ−
2
5d ≥ 18d ln d .

Let us now consider an ω ∈ Ω such that∣∣EPheη − ET (ω)heη
∣∣ < δ (20)

for all η ∈ {0, . . . ,m}d. By Lemma 6.10 and Corollary 6.8 we then obtain

∥∥EPhΦ− ET (ω)hΦ
∥∥
H

≤
(∑
η≤m

∣∣EPheη − ET (ω)heη
∣∣2)1/2

+

( ∑
η∈Nd

0
∃i:ηi>m

‖eη‖2
∞

)1/2(
EP |h|+ ET (ω)|h|

)

≤ (m+ 1)d/2 δ + 2
√
d e−a

2σ2
(6aσ)(d−1)/2

( 2
π(m+ 1)

)1/4
2−(m+1)Kh

≤
(
1 +

1
8ea2σ2

)d/2
δ4/5 + 2

√
d e−a

2σ2
(6aσ)(d−1)/2δ

1
10d 2−δ

− 2
5dKh ,
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where in the last step we used the inequalities 8ea2σ2 ≤ m < δ−
2
5d ≤ m + 1. Using Lemma 6.11

for t := δ−
2
5d we consequently obtain

∥∥EPhΦ− ET (ω)hΦ
∥∥
H
≤
((

1 +
1

8ea2σ2

)d/2
+ 2

√
d e−a

2σ2
(6aσ)(d−1)/2Kh

)
δ4/5 = ε .

Moreover, by Lemma 6.9 and a simple union bound argument we see that the probability of ω
satisfying (20) for all η ∈ {0, . . . ,m}d simultaneously is not smaller than

1−
∑

η∈{0,...,m}d

2
nδ2

n−1∑
i=0

corZ,i(heη, heη) .

In addition, we have

∑
η∈{0,...,m}d

2
nδ2

n−1∑
i=0

corZ,i(heη, heη) ≤
∑

η∈{0,...,m}d

2
nδ2

n−1∑
i=0

Khγi ≤
2(m+ 1)d

nδ2

n−1∑
i=0

Khγi ,

and since 21 < 8ea2σ2 ≤ m < δ−
2
5d we additionally have

2(m+ 1)d

nδ2
≤

2(1 + 1
8ea2σ2 )dmd

nδ2
≤

2(1 + 1
8ea2σ2 )d

nδ12/5

=
2(1 + 1

8ea2σ2 )d
(
(1 + 1

8ea2σ2 )
d
2 + 2

√
d e−a

2σ2
(6aσ)

d−1
2 Kh

)3
nε3

.

Combining these estimates we then obtain the assertion.

6.4 Proof of Theorem 3.3

For the proof of Theorem 3.3 we need some final preparations. Let us begin with the following
result on the existence and uniqueness of infinite sample SVMs which is a slight extension of similar
results established in [18, 12]:

Theorem 6.13 Let L : X×Y ×R → [0,∞) be a convex, locally Lipschitz continuous loss function
satisfying L(x, y, 0) ≤ 1 for all (x, y) ∈ (X×Y ), and let P be a distribution on X×Y . Furthermore,
let H be a RKHS of a bounded measurable kernel over X. Then for all λ > 0 there exists exactly
one element fP,λ,H ∈ H such that

λ‖fP,λ,H‖2
H +RL,P (fP,λ,H) = inf

f∈H
λ‖f‖2

H +RL,P (f) . (21)

Furthermore, we have ‖fP,λ,H‖H ≤ λ−1/2.

Note that the above theorem in particular yields ‖fT,λ,H‖H ≤ λ−1/2 by considering the empirical
measure associated to a training set T ∈ (X × Y )n. The following result which was (essentially)
shown in [18, 12] describes the stability of the empirical SVM solutions.

Theorem 6.14 Let X be a separable metric space, L : X × Y × R → [0,∞) be a convex, locally
Lipschitz continuous loss function satisfying L(x, y, 0) ≤ 1 for all (x, y) ∈ (X × Y ), and let P be
a distribution on X × Y . Furthermore, let H be the RKHS of continuous kernel k : X ×X → R
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satisfying ‖k‖∞ ≤ 1 and let Φ : X → H be the corresponding canonical feature map. Then for all
λ > 0 the function hλ : X × Y → R defined by

hλ(x, y) := L′(x, y, fP,λ(x)) , (x, y) ∈ X × Y, (22)

is bounded and satisfies and∥∥fP,λ,H − fT,λ,H
∥∥
H

≤ 1
λ

∥∥EPhλΦ− EThλΦ
∥∥
H

(23)

for all training sets T = ((x0, y0), . . . , (xn−1, yn−1)) ∈ (X × Y )n, where ET denotes the expectation
operator with respect to the empirical measure associated to T , i.e. ET g := 1

n

∑n−1
i=0 g(xi, yi), and

EPhλΦ is a Bochner integral in H.

Proof of Theorem 3.3: Obviously, it suffices to consider sets X of the form X = [−a, a]d for
some a ≥ 1. For σ > 0 and λ > 0 we write hλ,σ for the function we obtain by Theorem 6.14 for
H := Hσ(X). By the local Lipschitz continuity of L, ‖kσ‖∞ ≤ 1, Theorem 6.13, and (23) we then
have ∣∣RL,P (fT,λ,σ)−RL,P (fP,λ,σ)

∣∣ ≤ |L|λ−1/2,1 ‖fT,λ,σ − fP,λ,σ‖∞
≤ |L|λ−1/2,1 ‖fT,λ,σ − fP,λ,σ‖Hσ(X)

≤
|L|λ−1/2,1

λ

∥∥EPhλ,σΦ− EThλ,σΦ
∥∥
H

(24)

for all σ > 0, λ > 0 and all T = ((x0, y0), . . . , (xn−1, yn−1)) ∈ (X × Y )n. Moreover, using (22), (6),
and Lemma 6.6 we have∣∣hλ,σ(x, y)− hλ,σ(x′, y′)

∣∣ =
∣∣L′(x, y, fP,λ,σ(x))− L′(x′, y′, fP,λ,σ(x′))

∣∣
≤ c ·

(
|x− x′|2 + |y − y′|2 +

∣∣fP,λ,σ(x)− fP,λ,σ(x′)
∣∣2)1/2

≤ c ·
(
|x− x′|2 + |y − y′|2 + 2σ2‖fP,λ,σ‖2

Hσ(X)|x− x′|2
)1/2

≤ c ·
(
|x− x′|2 + |y − y′|2 + 2σ2λ−1|x− x′|2

)1/2

≤ 2c σλ−1/2 ‖(x, y)− (x′, y′)‖2

for all σ ≥ 1, λ ∈ (0, 1] and all (x, y), (x′, y′) ∈ X × Y . Consequently, we find |hλ,σ|1 ≤ 2c σλ−1/2.
Moreover, by the remark after Assumption L we have

|hλ,σ(x, y)| =
∣∣L′(x, y, fP,λ,σ(x))∣∣ ≤ c

(
1 + |fP,λ,σ(x)|

)
≤ c (1 + λ−1/2) ≤ 2c σλ−1/2

for all σ ≥ 1, λ ∈ (0, 1] and all (x, y) ∈ X × Y . Combining the last two estimates we thus have
‖hλ,σ‖Lip(X×Y ) ≤ 2c λ−1/2 σ for all σ ≥ 1, λ ∈ (0, 1]. By Lemma 6.6 we then find

‖hλ,σe(σ)
η ‖Lip(X×Y ) ≤ 2‖hλ,σ‖Lip(X×Y ) ‖e(σ)

η ‖Lip(X×Y ) ≤ 4
√

2 cλ−1/2 σ2 ,

where e(σ)
η denotes the η-th element, η ∈ Nd

0, of the ONB of Hσ(X) considered in Corollary 6.8.
Moreover, by Corollary 6.4 we may assume without loss of generality that κψ,ϕ is of the form

κψ,ϕ = cZ‖ψ‖Lip(X×Y )‖ϕ‖Lip(X×Y ) ,
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where cZ is a constant only depending on Z and (γi). Consequently, we obtain∣∣corZ,i(hλ,σe(σ)
η , hλ,σe

(σ)
η )
∣∣ ≤ 32cZ c2λ−1 σ4

for all σ ≥ 1, λ ∈ (0, 1], and η ∈ Nd
0. Since, in addition, we have ‖hλ,σ‖∞ ≤ 2c σλ−1/2 we see

that (18) and (19) are satisfied for Khλ,σ
:= c̃λ−1 σ4, where σ ≥ 1, λ ∈ (0, 1], and c̃ is a constant

independent of λ and σ. For n ≥ 1 and ε > 0 satisfying both

ε ≤ (1 + 8ea2σ2)−2d|L|λ−1/2,1λ
−1 (25)

ε ≤ (18d ln d)−2d, Theorem 6.12 together with (24) thus yields

µ
(
ω ∈ Ω :

∣∣RL,P (fT (ω),λ,σ)−RL,P (fP,λ,σ)
∣∣ > ε

)
≤ µ

(
ω ∈ Ω : ‖EPhΦ− ET (ω)hΦ‖H >

λε

|L|λ−1/2,1

)

≤
2c̃
(
1 + 1

8ea2σ2

) d
2 C̃3

λ,σ,d,a |L|3λ−1/2,1
σ4

ε3nλ4

n−1∑
i=0

γi , (26)

where C̃λ,σ,d,a := (1+ 1
8ea2σ2 )

d
2 +2c

√
d e−a

2σ2
(6aσ)

d−1
2 λ−1 σ4. Now the last condition of Assumption

S1 or S2 implies that λn ≥ n−1 for sufficiently large n. Using the assumption σn ≥ ln(n + 1)
contained in both S1 and S2 we hence obtain

C̃λn,σn,d,a =
(
1 +

1
8ea2σ2

n

) d
2 + 2c

√
d e−a

2σ2
n(6aσn)

d+7
2 λ−1

n

≤
(
1 +

1
8ea2(ln(n+ 1))2

) d
2 + 2c

√
dn−a

2(ln(n+1))2(6a ln(n+ 1))
d+7
2 n

for all sufficiently large n. Since the last expression tends to 1 for n → ∞ we then obtain
limn→∞ C̃λn,σn,d,a = 1. Analogously, we obtain limn→∞

(
1 + 1

8ea2σ2
n

)d/2 = 1.
Let us now consider the case where Assumption S1 is fulfilled. Then we have

(1 + 8ea2σ2
n)
−2d|L|

λ
−1/2
n ,1

λ−1
n →∞

and hence Condition (25) is satisfied for all sufficiently large n. Moreover, by the remark after
Assumption L we have |L|λ−1/2,1 ≤ c (1 + λ−1/2) for all λ > 0 and hence the first assumption of S1
implies limn→∞ λnσ

d
n = 0. By Lemma 6.5 we thus find

lim
i→∞

RL,P (fP,λn,σn) = R∗
L,P .

Consequently, (26) together with the above proven limit relations limn→∞
(
1 + 1

8ea2σ2
n

)d/2 = 1 and

limn→∞ C̃λn,σn,d,a = 1 shows that for sufficiently large n we have

µ
(
ω ∈ Ω :

∣∣RL,P (fT (ω),λn,σn
)−R∗

L,P

∣∣ > 2ε
)

≤ µ
(
ω ∈ Ω :

∣∣RL,P (fT (ω),λn,σn
)−RL,P (fP,λn,σn)

∣∣ > ε
)

≤ 4 c̃
|L|3

λ
−1/2
n ,1

σ4
n

ε3nλ4
n

n−1∑
i=0

γi ,
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and hence we obtain the assertion by the last condition of S1.
Conversely, if Assumption S2 is fulfilled we have

εn := (1 + 8ea2σ2
n)
−2d|L|

λ
−1/2
n ,1

λ−1
n → 0 ,

and consequently for a fixed ε > 0 we have εn ≤ ε for all sufficiently large n. Analogously to the
first case we thus find

µ
(
ω ∈ Ω :

∣∣RL,P (fT (ω),λn,σn
)−R∗

L,P

∣∣ > 2ε
)

≤ µ
(
ω ∈ Ω :

∣∣RL,P (fT (ω),λn,σn
)−RL,P (fP,λn,σn)

∣∣ > εn

)
≤ 4 c̃

|L|3
λ
−1/2
n ,1

σ4
n

ε3nnλ
4
n

n−1∑
i=0

γi

≤ 231d+2 c
|L|6

λ
−1/2
n ,1

σ4+12d
n

nλn

n−1∑
i=0

γi

for all sufficiently large n, and hence we obtain the assertion by the last condition of S2.

7 Proof of Theorem 4.1

For the proof of Theorem 4.1 we need to bound the correlation sequences for stochastic processes
which are the sum of a dynamical system and an observational noise process. This is the goal of
the following results. We begin with a lemma which computes the correlation of a joint process
from the correlations of its components.

Lemma 7.1 Let X = (Xi)i≥0 be an X-valued, identically distributed stochastic process defined
on (Ω,A, µ) and Y = (Yi)i≥0 be a Y -valued, identically distributed stochastic process defined on
(Θ,B, ν). Then the stochastic process Z = (Zi)i≥0 defined on (Ω×Θ,A⊗B, µ⊗ν) by Zi := (Xi, Yi)
is identically distributed with P := (µ ⊗ ν)Z0 = µX0 ⊗ νY0. Moreover, for ψ,ϕ ∈ L2(P ) the i-th
coordinate of the correlation sequence of Z is given by

corZ,i(ψ,ϕ) = EνcorX ,i
(
ψ( · , Y0), ϕ( · , Yi)

)
+ EµEµcorY,i

(
ψ(X0, · ), ϕ(X ′

0, · )
)
,

where X ′
0 is an independent copy of X0.

Proof: The first assertion regarding P is obvious. For the second assertion we fix an independent
copy X ′ = (X ′

i)i≥0 of X . Then an easy calculation using the fact that both X and Y are identically
distributed yields

corZ,i(ψ,ϕ) = EµEνψ(X0, Y0)ϕ(Xi, Yi)− EµEνψ(X0, Y0) · EµEνϕ(X0, Y0)
= EµEνψ(X0, Y0)ϕ(Xi, Yi)− EµEµEνψ(X0, Y0)ϕ(X ′

0, Yi)
+EµEµEνψ(X0, Y0)ϕ(X ′

0, Yi)− EµEνψ(X0, Y0) · EµEνϕ(X0, Y0)
= Eν

(
Eµψ(X0, Y0)ϕ(Xi, Yi)− EµEµψ(X0, Y0)ϕ(X ′

0, Yi)
)

+EµEµEνψ(X0, Y0)ϕ(X ′
0, Yi)− EµEµ

(
Eνψ(X0, Y0) · Eνϕ(X ′

0, Y0)
)

= Eν
(
Eµψ(X0, Y0)ϕ(Xi, Yi)− Eµψ(X0, Y0) · Eµϕ(X0, Yi)

)
+EµEµ

(
Eνψ(X0, Y0)ϕ(X ′

0, Yi)− Eνψ(X0, Y0) · Eνϕ(X ′
0, Y0)

)
= EνcorX ,i

(
ψ( · , Y0), ϕ( · , Yi)

)
+ EµEµcorY,i

(
ψ(X0, · ), ϕ(X ′

0, · )
)
,

i.e., we have proved the assertion.
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The following elementary lemma establishes the Lipschitz continuity of a certain type of function
which is important when considering the process that generates noisy observations of a dynamical
system.

Lemma 7.2 Let M ⊂ Rd be a compact subset and F : M → M be a Lipschitz continuous map.
For B > 0 and a fixed j ∈ {1, . . . , d} we write X := M + [−B,B]d and Y := πj(X), where
πj : Rd → R denotes the j-th coordinate projection. For h ∈ Lip(X × Y ) we define the function
h̄ : M × [−B,B]2d → R by

h̄(x, ε0, ε1) := h
(
x+ ε0, πj(F (x) + ε1)

)
, x ∈M, ε0, ε1 ∈ [−B,B]d . (27)

Then for all x ∈M and ε0, ε1 ∈ [−B,B]d we have

‖h̄(x, · , · )‖Lip([−B,B]2d) ≤
(
1 + ‖F‖Lip(M)

)
‖h‖Lip(X×Y )

‖h̄( · , ε0, ε1)‖Lip(M) ≤ ‖h‖Lip(X×Y ) .

Proof: For the first assertion we observe that for (ε0, ε1), (ε′0, ε
′
1) ∈ [−B,B]d × [−B,B]d we obvi-

ously have ∣∣h(x+ ε0, πj(F (x) + ε1)
)
− h
(
x+ ε′0, πj(F (x) + ε′1)

)∣∣
≤ ‖h‖Lip(X×Y )

(
‖ε0 − ε′0‖2

2 + |πj(F (x) + ε1)− πj(F (x) + ε′1)|2
)1/2

≤ ‖h‖Lip(X×Y )

(
‖ε0 − ε′0‖2

2 + ‖ε1 − ε′1‖2
2

)1/2
= ‖h‖Lip(X×Y ) ‖(ε0, ε1)− (ε′0, ε

′
1)‖2 .

Analogously, for x, x′ ∈M we have∣∣h(x+ ε0, πj(F (x) + ε1)
)
− h
(
x′ + ε0, πj(F (x′) + ε1)

)∣∣
≤ ‖h‖Lip(X×Y )

(
‖x− x′‖2

2 + |πj(F (x) + ε1)− πj(F (x′) + ε1)|2
)1/2

= ‖h‖Lip(X×Y )

(
‖x− x′‖2

2 + ‖F (x)− F (x′)‖2
2

)1/2
≤ ‖h‖Lip(X×Y )

(
1 + ‖F‖Lip(M)

)
‖x− x′‖2 .

From these estimates we easily obtain the assertions.

The following theorem bounds the correlation sequence for functions defined by (27). It will be
the key to apply Theorem 3.3 in the proof of Theorem 4.1.

Theorem 7.3 Let M ⊂ Rd be a compact subset and F : M → M be a Lipschitz continuous map
such that the dynamical system X := (F i)i≥0 has an ergodic measure µ. Moreover, let γ = (γi)i≥0

be a strictly positive null sequence such that

corX (ψ,ϕ) ∈ Λ(γ) , ψ, ϕ ∈ Lip(M) . (28)

Furthermore, let E = (εi)i≥0 be an in the wide sense stationary [−B,B]d-valued stochastic process
on (Θ,B, ν) such that the [−B,B]2d-valued process Y = (Yi)i≥0 on (Θ,B, ν) that is defined by
Yi(ϑ) = (εi(ϑ), εi+1(ϑ)), i ≥ 0, ϑ ∈ Θ, satisfies

corY(ψ,ϕ) ∈ Λ(γ) , ψ, ϕ ∈ Lip
(
[−B,B]2d

)
. (29)
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For a fixed j ∈ {1, . . . , d} we write X := M + [−B,B]d and Y := πj(X). Moreover, we define
the process Z̄ = (Zi)i≥0 on (Ω × Θ,A ⊗ B, µ ⊗ ν) by Z̄i = (F i, εi, εi+1), i ≥ 0. Then for all
ψ,ϕ ∈ Lip(X × Y ) we have

corZ̄(ψ̄, ϕ̄) ∈ Λ(γ) ,

where ψ̄ and ϕ̄ are defined by (27).

Proof: Let cX and cY be the constants we obtain by applying (28) and (29) to Theorem 6.2.
Moreover, since E is stationary in the wide sense we observe that Y is identically distributed.
Applying Lemma 7.1 to the processes X and Y then yields∣∣corZ̄,i(ψ̄, ϕ̄)

∣∣ ≤
∣∣∣EνcorX ,i

(
ψ̄( · , Y0), ϕ̄( · , Yi)

)∣∣∣+ ∣∣∣Ex∼µEx′∼µcorY,i
(
ψ̄(F 0(x), · ), ϕ̄(F 0(x′), · )

)∣∣∣
≤ cX Eν‖ψ̄( · , ε0, ε1)‖Lip(M) ‖ϕ̄( · , εi, εi+1)‖Lip(M) · γi

+cY Ex∼µEx′∼µ‖ψ̄(x, · )‖Lip([−B,B]2d) ‖ϕ̄(x′, · )‖Lip([−B,B]2d) · γi
≤ cX ‖ψ‖Lip(X×Y )‖ϕ‖Lip(X×Y ) γi

+cY
(
1 + ‖F‖Lip(M)

)
‖ψ‖Lip(X×Y )‖ϕ‖Lip(X×Y ) · γi ,

where in the last step we used Lemma 7.2.

Note that using the estimate of Theorem 7.3 in Lemma 6.9 we need that the above process Y is
stationary in the wide sense. Obviously, the latter is satisfied if the process E is stationary.

Proof of Theorem 4.1: For a fixed j ∈ {1, . . . , d} we write X := M +[−B,B]d and Y := πj(X).
Moreover, we define the X × Y -valued process Z = (Xi, Yi)i≥0 on (M × [−B,B]dN, µ ⊗ ν) by
Xi := F i + π0 ◦ Si and Yi := πj(F i+1 + π0 ◦ Si+1), and in addition, we write Pj := (µ⊗ ν)(X0,Y0).
Let us further consider the M × [−B,B]2d-valued stationary process Z̄ := (F i, π0 ◦ Si, π0 ◦ Si+1)
which is defined on (M × [−B,B]dN, µ⊗ ν). For ψ,ϕ ∈ Lip(X ×Y ) Theorem 7.3 together with our
decay of correlations assumptions then shows∣∣corZ̄,i(ψ̄, ϕ̄)

∣∣ ≤ κψ,ϕγi

for all i ≥ 0, where κψ,ϕ ∈ [0,∞) is a constant independent of i. Moreover, our construction ensures
corZ,i(ψ,ϕ) = corZ̄,i(ψ̄, ϕ̄) for all i ≥ 0 and hence Theorem 3.3 yields

lim
n→∞

µ⊗ ν
(
(x, ε) ∈M × [−B,B]dN :

∣∣RL,Pj (fTj(x,ε),λn,σn
)−R∗

L,Pj

∣∣ > ε
)

= 0

for all ε > 0. Using Assumption LD and the definition (10) we then easily obtain the assertion.

Appendix: Proof of Theorem 6.2

In the following BE denotes the closed unit ball of a Banach space E. Recall that a linear operator
S : E → F acting between two Banach spaces E and F is continuous if and only if it is bounded ,
i.e.,

‖S‖ := sup
x∈BE

‖Sx‖ <∞ .

Our first goal is to recall another equivalent condition which in practice is often easier to check. To
this end we need the following definition.
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Definition 7.4 Let E and F be Banach spaces and S : E → F be a linear map. Then S is said
to have a closed graph if for all x ∈ E, y ∈ F and all sequences (xn) ⊂ E satisfying xn → x and
Sxn → y we have Sx = y.

Obviously, every continuous linear operator has a closed graph. The following fundamental
theorem from functional analysis shows the converse implication.

Theorem 7.5 (Closed Graph Theorem) Let E and F be Banach spaces and S : E → F be a
linear map that has a closed graph. Then S is continuous.

Our next goal is to establish a analogous result for bilinear maps. To this end we first recall the
principle of uniform boundedness which is also known as Banach-Steinhaus Theorem.

Theorem 7.6 (Principle of Uniform Boundedness) Let E and F be Banach spaces, A be a
non-empty set, and Sα : E → F , α ∈ A, be bounded linear operators. If the family (Sα)α∈A satisfies

sup
α∈A

‖Sαx‖ <∞

for all x ∈ E then we actually have

sup
α∈A

sup
x∈BE

‖Sαx‖ <∞ .

Let us now recall that a map S : E1 × E2 → F between Banach spaces E1, E2, and F is called
bilinear if the maps S(x1, · ) : E2 → F and S( · , x2) : E1 → F are linear for all x1 ∈ E1 and
x2 ∈ E2. In order to state a closed graph theorem for bilinear maps we also need a notion which
describes a closed graph property for bilinear maps:

Definition 7.7 Let E1, E2, and F be Banach spaces and S : E1×E2 → F be a bilinear map. Then
S is said to have a partially closed graph if the maps S(x1, · ) : E2 → F and S( · , x2) : E1 → F
have closed graphs for all x1 ∈ E1 and x2 ∈ E2.

With these preparations we can now state and prove the announced closed graph theorem for
bilinear maps:

Theorem 7.8 Let E1, E2, and F be Banach spaces and S : E1 × E2 → F be a bilinear map that
has a partially closed graph. Then there exists a constant c ∈ [0,∞) such that

‖S(x1, x2)‖F ≤ c ‖x1‖E1 · ‖x2‖E2

for all x1 ∈ E1 and x2 ∈ E2.

Proof: By applying the Closed Graph Theorem we see that the maps S(x1, · ) : E2 → F and
S( · , x2) : E1 → F are bounded linear operators for all x1 ∈ E1 and x2 ∈ E2. In particular, the
boundedness of the operators S( · , x2) : E1 → F yields

sup
x1∈BE1

‖S(x1, x2)‖ <∞

for all x2 ∈ E2. Applying the Principle of Uniform Boundedness to the family of bounded operators
(S(x1, · ))x1∈BE1

thus shows

c := sup
x1∈BE1

sup
x2∈BE2

‖S(x1, x2)‖ <∞ .

Using the bi-linearity of S we then obtain the assertion.
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With these preparations we can now present the proof of Theorem 6.2.

Proof of Theorem 6.2: Obviously, corZ : E1 × E2 → F is a well-defined bilinear operator. In
view of Theorem 7.8 it suffices to show that this operator has a partially closed graph. We begin
by showing that corZ(ψ, · ) : E2 → F has a closed graph for all ψ ∈ E1. To this end let us fix some
ψ ∈ E1, ϕ ∈ E2, a sequence b := (bn)n≥0 ∈ F and a sequence (ϕi)i≥1 ⊂ E2 such that

lim
i→∞

‖ϕi − ϕ‖E2 = 0

lim
i→∞

‖ corZ(ψ,ϕi)− b‖F = 0 . (30)

Obviously, corZ(ψ, · ) : E2 → F has a closed graph if corZ(ψ,ϕ) = b. To show this equality we first
observe that for fixed n ≥ 0 and i→∞ we have∣∣∣∫

Z
ϕi dP −

∫
Z
ϕdP

∣∣∣ ≤ ‖ϕ− ϕi‖L1(P ) ≤ ‖id : E2 → L2(P )‖ · ‖ϕ− ϕi‖E2 → 0

and∣∣∣∫
Ω
ψ(Z0) · ϕ(Zn) dµ−

∫
Ω
ψ(Z0) · ϕi(Zn) dµ

∣∣∣ ≤ ‖ψ‖L2(P ) · ‖ϕ− ϕi‖L2(P )

≤ ‖ψ‖L2(P ) · ‖id : E2 → L2(P )‖ · ‖ϕ− ϕi‖E2 → 0 .

From this we conclude limi→∞ corZ,n(ψ,ϕi) = corZ,n(ψ,ϕ) for the n-th coordinate of se-
quences of correlations. Moreover, F is continuously included in `∞ and hence (30) implies
limi→∞ corZ,n(ψ,ϕi) = bn for all n ≥ 0. Combining these considerations yields corZ,n(ψ,ϕ) = bn
for all n ≥ 0, i.e. we have shown that corZ(ψ, · ) : E2 → F has a closed graph. Since the fact
that all corZ( · , ϕ) : E1 → F have a closed graph can be shown completely analogous the proof is
completed.
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